Formulas

Imperial

\[\text{kW} = \frac{\text{CFM} \times (T^\circ_2 - T^\circ_1) \times 1.08}{3413} \]

- \(\text{kW} \): Power in kW
- \(\text{CFM} \): Air volume in cubic feet per minute
- \(T^\circ_2 \): Temperature of air leaving heater in °F
- \(T^\circ_1 \): Temperature of air entering heater in °F

Metric

\[\text{P} = \frac{\text{Q} \times (T^\circ_2 - T^\circ_1) \times 1.21}{3600} \]

- \(\text{P} \): Power in kW
- \(\text{Q} \): Air volume in m³/hr
- \(T^\circ_2 \): Temperature of air leaving heater in °C
- \(T^\circ_1 \): Temperature of air entering heater in °C

KW per square foot

\[\text{Imperial} \quad \frac{\text{kW}}{\text{pi}^2} = \frac{\text{kW}}{\text{S}} \]

\[\text{Metric} \quad \frac{\text{P}}{\text{S}} \]

- \(\text{S} \): Surface area in square feet

Duct area

\[\text{Imperial} \quad \text{S} = \frac{\text{W} \times \text{H}}{144} \]

\[\text{Metric} \quad \text{S} = \text{W} \times \text{H} \]

- \(\text{W} \): Duct width in inches
- \(\text{H} \): Duct height in inches

Electric power

Single phase

\[\text{P} = \frac{\text{V} \times \text{I}}{\text{R}} \]

3 phase

\[\text{P} = \frac{\text{V}^2}{\text{R}} \times 1.732 \]

- \(\text{P} \): Power in Watts
- \(\text{V} \): Voltage in Volts
- \(\text{I} \): Current in Amps
- \(\text{R} \): Resistance in \(\Omega \) (Ohm)

Conversions

\(\text{\(^\circ F \) to \(^\circ C \)} \)

\[^\circ C = \frac{(^\circ F - 32)}{1.8} \]

\(\text{\(^\circ C \) to \(^\circ F \)} \)

\[^\circ F = (1.8 \times ^\circ C) + 32 \]

BTU to kW

\[1 \text{ kW} = 3413 \text{ BTU/hre} \]

kW to BTU

\[1 \text{ BTU/hre} = 0.29307 \times 10^{-3} \text{ kW} \]

mm to inches

\[1 \text{ in} = 25.4 \text{ mm} \]

Inches to mm

\[1 \text{ mm} = 0.03937 \text{ in} \]

CFM to FPM

\[1 \text{ FPM} = \frac{1 \text{ CFM}}{\text{S}} \]

FPM to CFM

\[1 \text{ CFM} = 1 \text{ FPM} \times \text{S} \]

- \(\text{S} \): Surface area in square feet
Selection Guide

<table>
<thead>
<tr>
<th>Element Types</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Coil</td>
<td>- Excellent heat dissipation</td>
<td>- Elements in direct contact with air</td>
</tr>
<tr>
<td></td>
<td>- Minimal pressure drop</td>
<td>- Cannot be installed in humid environments</td>
</tr>
<tr>
<td></td>
<td>- Fast response time</td>
<td>- Cannot be installed in dusty environments</td>
</tr>
<tr>
<td></td>
<td>- More kilowatts per sq.ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Quick delivery</td>
<td></td>
</tr>
<tr>
<td>Standard Tubular</td>
<td>- Less sensitive to humidity and dust</td>
<td>- Increase in pressure drop</td>
</tr>
<tr>
<td></td>
<td>- Suited for demanding environments</td>
<td>- Slower response time</td>
</tr>
<tr>
<td></td>
<td>- Excellent mechanical resistance</td>
<td>- Less heat dissipation</td>
</tr>
<tr>
<td></td>
<td>- Heating element not in direct contact with air</td>
<td>- Less kilowatt per sq.ft.</td>
</tr>
<tr>
<td>Finned Tubular</td>
<td>- Good heat dissipation</td>
<td>- Longer delivery</td>
</tr>
<tr>
<td></td>
<td>- Less sensitive to humidity and dust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Suited for demanding environments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Excellent mechanical resistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Heating element not in direct contact with air</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Increase in pressure drop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Slower response time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Less heat dissipation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Less kilowatt per sq.ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Longer delivery</td>
<td></td>
</tr>
</tbody>
</table>

Static Pressure Loss

![Static Pressure Loss Graph](image-url)
Minimum Air Velocity

Open Coil Elements

Kilowatts per square foot

Minimum air velocity in FPM

Tubular Elements

Kilowatts per square foot

Minimum air velocity in FPM

Visit our web site at www.neptronics.com