Formulas

Imperial

\[
kW = \frac{\text{CFM} \times (T°^2 - T°^1) \times 1.08}{3413}
\]

- **kW**: Power in kW
- **CFM**: Air volume in cubic feet per minute
- **T°2**: Temperature of air leaving heater in °F
- **T°1**: Temperature of air entering heater in °F

Metric

\[
P = \frac{\text{Q} \times (T°^2 - T°^1) \times 1.21}{3600}
\]

- **P**: Power in kW
- **Q**: Air volume in m³/hr
- **T°2**: Temperature of air leaving heater in °C
- **T°1**: Temperature of air entering heater in °C

KW per square foot

Imperial

\[
kW / \pi^2 = \frac{kW}{S}
\]

- **kW**: Power in kW
- **S**: Surface area in square feet

Metric

\[
P / \pi^2 = \frac{P}{S}
\]

- **P**: Power in kW
- **S**: Surface area in m²

Duct area

Imperial

\[
S = \frac{W \times H}{144}
\]

- **S**: Surface area in square feet
- **W**: Duct width in inches
- **H**: Duct height in inches

Metric

\[
S = W \times H
\]

- **S**: Surface area in m²
- **W**: Duct width in meters
- **H**: Duct height in meters

Electric power

Single phase

\[
P = V \times I
\]

3 phase

\[
P = \frac{V^2}{R} \times 1.732
\]

- **P**: Power in Watts
- **V**: Voltage in Volts
- **I**: Current in Amps
- **R**: Resistance in Ω (Ohm)

Line current

Single phase

\[
I = \frac{P}{V}
\]

3 phase

\[
I = \frac{P}{V \times 1.732}
\]

Conversions

- **∞F to ∞C**
 \[
 ∞C = \frac{(∞F - 32)}{1.8}
 \]

- **∞C to ∞F**
 \[
 ∞F = (1.8 \times ∞C) + 32
 \]

- **BTU to kW**
 \[
 1 \text{ kW} = 3413 \text{ BTU/hre}
 \]

- **kW to BTU**
 \[
 1 \text{ BTU/hre} = 0.29307 \times 10^{-3} \text{ kW}
 \]

- **mm to inches**
 \[
 1 \text{ in} = 25.4 \text{ mm}
 \]

- **Inches to mm**
 \[
 1 \text{ mm} = 0.03937 \text{ in}
 \]

- **CFM to FPM**
 \[
 1 \text{ FPM} = \frac{1 \text{ CFM}}{S}
 \]

- **FPM to CFM**
 \[
 1 \text{ CFM} = 1 \text{ FPM} \times S
 \]

- **S**: Surface area in square feet
Selection Guide

Element Types

<table>
<thead>
<tr>
<th>Element Types</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Open Coil | - Excellent heat dissipation
 - Minimal pressure drop
 - Fast response time
 - More kilowatts per sq.ft.
 - Quick delivery | - Elements in direct contact with air
 - Elements in direct contact with air
 - Cannot be installed in humid environments
 - Cannot be installed in dusty environments |
| Standard Tubular | - Less sensitive to humidity and dust
 - Suited for demanding environments
 - Excellent mechanical resistance
 - Heating element not in direct contact with air | - Increase in pressure drop
 - Slower response time
 - Less heat dissipation |
| Finned Tubular | - Good heat dissipation
 - Less sensitive to humidity and dust
 - Suited for demanding environments
 - Excellent mechanical resistance
 - Heating element not in direct contact with air | - Increase in pressure drop
 - Slower response time
 - Less kilowatt per sq.ft.
 - Longer delivery |

Static Pressure Loss

![Static Pressure Loss Graph](image-url)

Visit our web site at www.neptronic.com
Minimum Air Velocity

Open Coil Elements

Tubular Elements